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Abstract: A new method for dipolar cycloaddition of diazocyclohexane-1,3-diones, leading 10 benzofuran
derivatives, has been applied to the total synthesis of natural products from Tephrosia and Pongamia

The formal 1,3-dipolar cycloaddition of dicarbonyl compounds with alkynes or with heteroatom-
substituted olefins followed by elimination (eq 1) has been used for the preparation of 3-acylfurans. The
methods that have been developed include the relatively low-yielding (18-65%) copper-mediated reactions of
2,2-dibromodiketones with acetylenes or vinyl sulfides3 and oxidative cyclizations of vinyl esters with ceric
ammonium nitrate (30-61% yield) and of enol ethers or alkynes with manganese acetate (69-98% yield).4 The
necessity for stoichiometric quantities of metal and the consequent difficulties in disposing of reduced metals
have prompted a search for better methods. The copper-promoted cycloaddition of diazo-1,3-dicarbonyl
compounds with enol ethers (21-76%) has been reported, but conversion of the products to furans was not.3
The direct furannulation of 1,3-diketones by an allenic sulfonium salt (46-75%)0 or a phenylthionitroolefin (63-
71%)7 is limited to the 3-acyl-4-methylfuran substitution pattern. We have been interested in dipolar
cycloadditions of diazocyclohexane-1,3-diones with a variety of polar olefins catalyzed by rhodium acetate 8
We report here that reactions of these diazoketones with vinyl acetates followed by acid-catalyzed dehydration
is an efficient (41-71% overall yield) route to benzofuran derivatives. We have used this process as the key step
in the construction of natural products pongamol and lanceolatin B.

X =/Y 1 HY i
T ijf\f_‘" é@“’
(o} o) (o)

X=H,, Bry, N
The sequence that we have developed begins with the reaction of the 2-diazo-1,3-dicarbonyl compound
1 with a vinyl] acetate, present in 10-fold excess (eq 2). Rhodium acetate is used in 1 mol %, and fluorobenzene
is the solvent. The intermediate acetates are not characterized but rather directly treated with toluenesulfonic
acid in benzene at reflux for 1 h, at which time the furans can be isolated by chromatography in good overall
yields. The daia are collected in the Table.® Entry 4, the preparation of (1)-evodone,!? demonstrates an
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interesting aspect of this process. The intermediate dihydrofuran is exclusively the cis stercochemistry despite
the use of a mixture of stereoisomers of the vinylic acetate. There is thus kinetic discrimination against the trans
isomer in the cycloaddition.

The application of this technology to the total synthesis of benzofuran natural products was next
examined. We have become interested in a group of flavonoids isolated from Tephrosia, a tropical and
subtropical plant genus of over 300 members found in India and the southern part of Africa, and Pongamia,
which is found in Japan and widely distributed throughout southeast Asia, to the west Pacific, and to north
Australia. Extracts from these plants have insecticidal, pesticidal, antihelmintic, anticancer, and antiulcer
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activity and are used in traditional medicines. Pongamol has been isolated from Pongamia glabra,1! Tephrosia
purpurea,12 T. lanceolota,13 and T. hamiltonii.14 The structure of pongamol was established as the enol by x-
ray crystallography.15 Lanceolatin B was isolated from P. pinnatal6 and T. purpurea.1?

The conversion of compound 4 to both of these natural products was begun by carboxylation and
dehydrogenation to give compound 11,18 the methyl ester of karanjic acid. a degradation product that can be
obtained from many of the Pongamia flavonoids, such as karanjin, by treatment with alkali. The spectroscopic
properties of our synthetic material agreed well with those reported in the literature.
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This substance served as a precursor to pongamol by first methylation of the phenol and then
condensation with acetophenone. These transformations had been reported in undefined yield by Seshadri in a
resynthesis of pongamol from naturally-derived karanjic acid.!9 The pongamol produced by this route
exhibited physical (mp 130 °C, lit 127-9 °C,!1 130 °C,14 135-6 °C,15 128-9 °C,19 128 °C20) and spectroscopic
properties ({H NMR, IR) identical to those reported in the literature.

The conversion of 11 to lanceolatin B utilized the flavone annulation procedure of von Strandtmann.2!
It was treated with dimsyl anion in DMSO to form the B-ketosulfoxide 13, which on treatment with
benzaldehyde and piperidine, first at 40 °C and then at 110 °C, delivers the natural product. Presumably,
Knoevenagel condensation to produce the highly-activated benzylidene f-ketosulfoxide is followed by
conjugate addition of the phenolic hydroxyl and elimination of methanesulfenic acid. The lanceolatin B
produced in this route exhibited physical (mp 126-127 °C, lit 127 °C,!7 147.9 °C,17 135-6 °C22) and
spectroscopic propertics (JH NMR, IR) consistent with those reported in the literature. The efficiency of this
synthesis is exemplified by the preparation of aver 10 g of the natural product by this route.

In conclusion, a new entry to biologically-active polyketides has been gained through the application of
a rhodium-catalyzed carbene transformation. The process has afforded efficient syntheses of pongamol (6 steps,
41 % ovenrall yield) and lanceolatin B (6 steps, 35 % overall yield), which have desirable medicinal properties.
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